Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Sci Total Environ ; 915: 170117, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38237786

ABSTRACT

Forests are continuously altered by disturbances. Yet, knowledge of global pattern of forest disturbance agents, its drivers, and shifts under changing climate remain scarce. Here we present a meta-analysis of current and projected (+2° and + 4 °C) distribution of forest disturbance agents causing immediate tree mortality (i.e., fire, pest outbreak, hydro-geomorphic, and wind) at country, continental, biome, and global scales. The model including combination of climatic (precipitation of driest quarter, actual evapotranspiration, and minimum temperature), geographical (distance to coast and topography complexity), and forest characteristics (tree density) performs better than any other model in explaining the distribution of disturbance agents (R2 = 0.74). We provide global maps (0.5° × 0.5°) of current and potential future distribution of forest disturbance agents. Globally, the most frequent disturbance agent was fire (46.09 %), followed by pest outbreak (23.27 %), hydro-geomorphic disturbances (18.97 %), and wind (11.67 %). Our projections indicate spatially contrasting shifts in disturbance agents, with fire and wind risk increase between ~50°S and ~ 40°N under warming climate. In particular, the substantial increase in fire risk, exceeding 31 % in the most affected areas, is projected over Mediterranean, the western and southeast USA, African, Oceanian, and South American forests. On the other hand, pest outbreak and hydro-geomorphic disturbances are projected to increase in more southern (> ~ 50°S) and northern (> ~ 40°N) latitudes. Our findings are critical for understanding ongoing changes and developing mitigation strategies to maintain the ecological integrity and ecosystem services under shifts in forest disturbances. We suggest that projected shifts in the global distribution of forest disturbance agents needs to be considered to future models of vegetation or carbon sink dynamics under projected climate change.


Subject(s)
Ecosystem , Fires , Climate Change , Forests , Trees
3.
Sci Total Environ ; 872: 162167, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36775147

ABSTRACT

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.

4.
Glob Chang Biol ; 28(23): 6921-6943, 2022 12.
Article in English | MEDLINE | ID: mdl-36117412

ABSTRACT

Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.


Subject(s)
Carbon Cycle , Climate Change , Carbon , Temperature , Water
5.
Glob Chang Biol ; 28(20): 5928-5944, 2022 10.
Article in English | MEDLINE | ID: mdl-35795901

ABSTRACT

Central Europe has been experiencing unprecedented droughts during the last decades, stressing the decrease in tree water availability. However, the assessment of physiological drought stress is challenging, and feedback between soil and vegetation is often omitted because of scarce belowground data. Here we aimed to model Swiss forests' water availability during the 2015 and 2018 droughts by implementing the mechanistic soil-vegetation-atmosphere-transport (SVAT) model LWF-Brook90 taking advantage of regionalized depth-resolved soil information. We calibrated the model against soil matric potential data measured from 2014 to 2018 at 44 sites along a Swiss climatic and edaphic drought gradient. Swiss forest soils' storage capacity of plant-available water ranged from 53 mm to 341 mm, with a median of 137 ± 42 mm down to the mean potential rooting depth of 1.2 m. Topsoil was the primary water source. However, trees switched to deeper soil water sources during drought. This effect was less pronounced for coniferous trees with a shallower rooting system than for deciduous trees, which resulted in a higher reduction of actual transpiration (transpiration deficit) in coniferous trees. Across Switzerland, forest trees reduced the transpiration by 23% (compared to potential transpiration) in 2015 and 2018, maintaining annual actual transpiration comparable to other years. Together with lower evaporative fluxes, the Swiss forests did not amplify the blue water deficit. The 2018 drought, characterized by a higher and more persistent transpiration deficit than in 2015, triggered widespread early wilting across Swiss forests that was better predicted by the SVAT-derived mean soil matric potential in the rooting zone than by climatic predictors. Such feedback-driven quantification of ecosystem water fluxes in the soil-plant-atmosphere continuum will be crucial to predicting physiological drought stress under future climate extremes.


Subject(s)
Droughts , Soil , Ecosystem , Forests , Plants , Switzerland , Trees/physiology , Water/physiology
6.
Nat Commun ; 13(1): 2015, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440102

ABSTRACT

The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.


Subject(s)
Fagus , Air Movements , Carbon , Climate Change , Forests
7.
Commun Biol ; 5(1): 163, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273334

ABSTRACT

The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.


Subject(s)
Fagus , Climate Change , Droughts , Forests , Trees
8.
Proc Biol Sci ; 288(1961): 20211631, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34666524

ABSTRACT

With accelerating environmental change, understanding forest disturbance impacts on trade-offs between biodiversity and carbon dynamics is of high socio-economic importance. Most studies, however, have assessed immediate or short-term effects of disturbance, while long-term impacts remain poorly understood. Using a tree-ring-based approach, we analysed the effect of 250 years of disturbances on present-day biodiversity indicators and carbon dynamics in primary forests. Disturbance legacies spanning centuries shaped contemporary forest co-benefits and trade-offs, with contrasting, local-scale effects. Disturbances enhanced carbon sequestration, reaching maximum rates within a comparatively narrow post-disturbance window (up to 50 years). Concurrently, disturbance diminished aboveground carbon storage, which gradually returned to peak levels over centuries. Temporal patterns in biodiversity potential were bimodal; the first maximum coincided with the short-term post-disturbance carbon sequestration peak, and the second occurred during periods of maximum carbon storage in complex old-growth forest. Despite fluctuating local-scale trade-offs, forest biodiversity and carbon storage remained stable across the broader study region, and our data support a positive relationship between carbon stocks and biodiversity potential. These findings underscore the interdependencies of forest processes, and highlight the necessity of large-scale conservation programmes to effectively promote both biodiversity and long-term carbon storage, particularly given the accelerating global biodiversity and climate crises.


Subject(s)
Carbon , Climate Change , Biodiversity , Carbon/analysis , Carbon Sequestration , Conservation of Natural Resources , Forests , Trees
9.
Ecol Appl ; 30(8): e02189, 2020 12.
Article in English | MEDLINE | ID: mdl-32506652

ABSTRACT

Estimates of historical disturbance patterns are essential to guide forest management aimed at ensuring the sustainability of ecosystem functions and biodiversity. However, quantitative estimates of various disturbance characteristics required in management applications are rare in longer-term historical studies. Thus, our objectives were to (1) quantify past disturbance severity, patch size, and stand proportion disturbed and (2) test for temporal and subregional differences in these characteristics. We developed a comprehensive dendrochronological method to evaluate an approximately two-century-long disturbance record in the remaining Central and Eastern European primary mountain spruce forests, where wind and bark beetles are the predominant disturbance agents. We used an unprecedented large-scale nested design data set of 541 plots located within 44 stands and 6 subregions. To quantify individual disturbance events, we used tree-ring proxies, which were aggregated at plot and stand levels by smoothing and detecting peaks in their distributions. The spatial aggregation of disturbance events was used to estimate patch sizes. Data exhibited continuous gradients from low- to high-severity and small- to large-size disturbance events. In addition to the importance of small disturbance events, moderate-scale (25-75% of the stand disturbed, >10 ha patch size) and moderate-severity (25-75% of canopy disturbed) events were also common. Moderate disturbances represented more than 50% of the total disturbed area and their rotation periods ranged from one to several hundred years, which is within the lifespan of local tree species. Disturbance severities differed among subregions, whereas the stand proportion disturbed varied significantly over time. This indicates partially independent variations among disturbance characteristics. Our quantitative estimates of disturbance severity, patch size, stand proportion disturbed, and associated rotation periods provide rigorous baseline data for future ecological research, decisions within biodiversity conservation, and silviculture intended to maintain native biodiversity and ecosystem functions. These results highlight a need for sufficiently large and adequately connected networks of strict reserves, more complex silvicultural treatments that emulate the natural disturbance spectrum in harvest rotation times, sizes, and intensities, and higher levels of tree and structural legacy retention.


Subject(s)
Ecosystem , Picea , Animals , Biodiversity , Forests , Trees
10.
Tree Physiol ; 40(4): 498-510, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32031220

ABSTRACT

During the growing season, trees allocate photoassimilates to increase their aboveground woody biomass in the stem (ABIstem). This 'carbon allocation' to structural growth is a dynamic process influenced by internal and external (e.g., climatic) drivers. While radial variability in wood formation and its resulting structure have been intensively studied, their variability along tree stems and subsequent impacts on ABIstem remain poorly understood. We collected wood cores from mature trees within a fixed plot in a well-studied temperate Fagus sylvatica L. forest. For a subset of trees, we performed regular interval sampling along the stem to elucidate axial variability in ring width (RW) and wood density (ρ), and the resulting effects on tree- and plot-level ABIstem. Moreover, we measured wood anatomical traits to understand the anatomical basis of ρ and the coupling between changes in RW and ρ during drought. We found no significant axial variability in ρ because an increase in the vessel-to-fiber ratio with smaller RW compensated for vessel tapering towards the apex. By contrast, temporal variability in RW varied significantly along the stem axis, depending on the growing conditions. Drought caused a more severe growth decrease, and wetter summers caused a disproportionate growth increase at the stem base compared with the top. Discarding this axial variability resulted in a significant overestimation of tree-level ABIstem in wetter and cooler summers, but this bias was reduced to ~2% when scaling ABIstem to the plot level. These results suggest that F. sylvatica prioritizes structural carbon sinks close to the canopy when conditions are unfavorable. The different axial variability in RW and ρ thereby indicates some independence of the processes that drive volume growth and wood structure along the stem. This refines our knowledge of carbon allocation dynamics in temperate diffuse-porous species and contributes to reducing uncertainties in determining forest carbon fixation.


Subject(s)
Fagus , Biomass , Forests , Trees , Wood
11.
Glob Chang Biol ; 26(4): 2463-2476, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31968145

ABSTRACT

The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha-1  year-1  km-1 for P. abies and 0.93 ± 0.010 Mg C ha-1  year-1  km-1 for F. sylvatica). During warm-dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm-dry extremes. Importantly, cold-dry extremes had negative impacts on regional forest NPP comparable to warm-dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.

12.
Oecologia ; 191(3): 519-530, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31541317

ABSTRACT

Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.


Subject(s)
Plant Transpiration , Trees , Droughts , Forests , Vapor Pressure , Water
13.
Glob Chang Biol ; 25(9): 3136-3150, 2019 09.
Article in English | MEDLINE | ID: mdl-31166643

ABSTRACT

Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate-driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901-2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large-scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.


Subject(s)
Picea , Pinus , Climate Change , Forests , Temperature
14.
Glob Chang Biol ; 24(5): 2169-2181, 2018 05.
Article in English | MEDLINE | ID: mdl-29322582

ABSTRACT

Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750-2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).


Subject(s)
Climate Change , Forests , Picea , Droughts , Europe
15.
Sci Total Environ ; 615: 1460-1469, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29055588

ABSTRACT

Under predicted climate change, native silver fir (Abies alba) and European beech (Fagus sylvatica) are the most likely replacement species for the Norway spruce (Picea abies) monocultures planted across large parts of continental Europe. Our current understanding of the adaptation potential of fir-beech mixed forests to climate change is limited because long-term responses of the two species to environmental changes have not yet been comprehensively quantified. We compiled and analysed tree-ring width (TRW) series from 2855 dominant, co-dominant, sub-dominant and suppressed fir and beech trees sampled in 17 managed and unmanaged mixed beech-fir forest sites across Continental Europe, including Bosnia and Herzegovina, Germany, Italy, Romania and Slovakia. Dendroecological techniques that combine various detrending methods were used to investigate variation in radial growth of co-occurring fir and beech trees. Coincidental with peak SO2 emissions, the growth of silver fir declined between 1950 and 1980 at most sites, whereas beech growth increased during this period. Correspondent to a significant warming trend from 1990-2010, average beech growth declined, but silver fir growth increased. Long-term growth patterns and growth-climate sensitivity of fir and beech trees did not significantly differ between managed and unmanaged forests. Multi-decadal changes in the growth rate of all vertical tree classes were similar. In contrast to previous indications of limited drought susceptibility of beech mixed stands, this study suggests that the mixture of tree species in forest stands does not necessarily prevent growth depressions induced by long-term environmental change. Our results further imply that forest management does not necessarily alter their sensitivity to environmental changes.


Subject(s)
Abies/growth & development , Climate Change , Fagus/growth & development , Bosnia and Herzegovina , Environmental Monitoring , Germany , Italy , Norway , Romania , Slovakia , Trees/growth & development
16.
Front Plant Sci ; 9: 1964, 2018.
Article in English | MEDLINE | ID: mdl-30713543

ABSTRACT

Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.

17.
For Ecol Manage ; 388: 67-78, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28860676

ABSTRACT

In order to gauge ongoing and future changes to disturbance regimes, it is necessary to establish a solid baseline of historic disturbance patterns against which to evaluate these changes. Further, understanding how forest structure and composition respond to variation in past disturbances may provide insight into future resilience to climate-driven alterations of disturbance regimes. We established 184 plots (mostly 1000 m2) in 14 primary mountain Norway spruce forests in the Western Carpathians. On each plot we surveyed live and dead trees and regeneration, and cored around 25 canopy trees. Disturbance history was reconstructed by examining individual tree growth trends. The study plots were further aggregated into five groups based on disturbance history (severity and timing) to evaluate and explain its influence on forest structure. These ecosystems are characterized by a mixed severity disturbance regime with high spatiotemporal variability in severity and frequency. However, periods of synchrony in disturbance activity were also found. Specifically, a peak of canopy disturbance was found for the mid-19th century across the region (about 60% of trees established), with the most important periods of disturbance in the 1820s and from the 1840s to the 1870s. Current stand size and age structure were strongly influenced by past disturbance activity. In contrast, past disturbances did not have a significant effect on current tree density, the amount of coarse woody debris, and regeneration. High mean densities of regeneration with height >50 cm (about 1400 individuals per ha) were observed. Extensive high severity disturbances have recently affected Central European forests, spurring a discussion about the causes and consequences. We found some evidence that forests in the Western Carpathians were predisposed to recent severe disturbance events as a result of synchronized past disturbance activity, which partly homogenized size and age structure and made recent stands more vulnerable to bark beetle outbreak. Our data suggest that these events are still part of the range of natural variability. The finding that regeneration density and volume of coarse woody debris were not influenced by past disturbance illustrates that vastly different past disturbance histories are not likely to change the future trajectories of these forests. These ecosystems currently have high ecological resilience to disturbance. In conclusion, we suggest that management should recognize disturbances as a natural part of ecosystem dynamics in the mountain forests of Central Europe, account for their stochastic occurrence in management planning, and mimic their patterns to foster biodiversity in forest landscapes.

18.
Nat Clim Chang ; 7: 395-402, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28861124

ABSTRACT

Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

SELECTION OF CITATIONS
SEARCH DETAIL
...